Parallel Implementation of Schönhage's Integer GCD Algorithm
نویسنده
چکیده
We present a parallel implementation of Schönhage’s integer GCD algorithm on distributed memory architectures. Results are generalized for the extended GCD algorithm. Experiments on sequential architectures show that Schönhage’s algorithm overcomes other GCD algorithms implemented in two well known multiple-precision packages for input sizes larger than about 50000 bytes. In the extended case this threshold drops to 10000 bytes. In these input ranges a parallel implementation provides additional speed-up. Parallelization is achieved by distributing matrix operations and by using parallel implementations of the multiple-precision integer multiplication algorithms. We use parallel Karatsuba’s and parallel 3-primes FFT multiplication algorithms implemented in CALYPSO, a computer algebra library for parallel symbolic computation we have developed. Schönhage’s parallel algorithm is analyzed by using a message-passing model of computation. Experimental results on distributed memory architectures, such as the Intel Paragon, confirm the analysis.
منابع مشابه
On Schönhage's algorithm and subquadratic integer gcd computation
We describe a new subquadratic left-to-right gcd algorithm, inspired by Schönhage’s algorithm for reduction of binary quadratic forms, and compare it to the first subquadratic gcd algorithm discovered by Knuth and Schönhage, and to the binary recursive gcd algorithm of Stehlé and Zimmermann. The new gcd algorithm runs slightly faster than earlier algorithms, and it is much simpler to implement....
متن کاملSublinear Parallel Algorithm for Computing the Greatest Common Divisor of Two Integers
The atdvent of practical parallel processors has caused a reexamination of many existing algorithms with'the hope of discovering a parallel implementation. One of the oldest and best know algorithms is Euclid's algorithm for computing the greatest common divisor (GCD). In this paper we present a parallel algorithm to compute the GCD of two integers. Although there have been results in the paral...
متن کاملParallel Polynomial Operations on SMPs: an Overview
1 SMP-based parallel algorithms and implementations for polynomial factoring and GCD are overviewed. Topics include polynomial factoring modulo small primes, univariate and multivariate p-adic lifting, and reformulation of lift basis. Sparse polynomial GCD is also covered.
متن کاملA modular integer GCD algorithm
This paper describes the first algorithm to compute the greatest common divisor (GCD) of two n-bit integers using a modular representation for intermediate values U , V and also for the result. It is based on a reduction step, similar to one used in the accelerated algorithm [T. Jebelean, A generalization of the binary GCD algorithm, in: ISSAC ’93: International Symposium on Symbolic and Algebr...
متن کاملA parallel extended GCD algorithm
A new parallel extended GCD algorithm is proposed. It matches the best existing parallel integer GCD algorithms of Sorenson and Chor and Goldreich, since it can be achieved in O (n/ logn) time using at most n1+ processors on CRCW PRAM. Sorenson and Chor and Goldreich both use a modular approach which consider the least significant bits. By contrast, our algorithm only deals with the leading bit...
متن کامل